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440, D-28334 Bremen, Germany 

Received 28 September 1993, in final form 16 December 1993 

Abstract. We consider a simple dynamical system in fhree different ways, demonstrating that 
dynamic enmpy behaviour cin be radically different depending on the perspective. Namely, 
the Boltmann-Gibbs entropy of the entire (invertib1e)~system may be constanf. increasing or 
decreasing as a function of time. However, by taking a trace of an invertible dynamical system 
we may either obtain a system in which the entropy is continuously demeaing or an exad 
(non-invertible) factor may be obtained which shows a global evolution of entropy to a unique 
equilibrium. 

1. Introduction 

For over a century the question of how microscopic reversibility could be reconciled with 
macroscopic irreversibility has intrigued scientists and generated various attempts to solve 
the apparent incompatibility of these two properties. The problem was recognized early 
in the work of Boltzmann and Clausius who attempted to find a dynamical foundation for 
thermodynamics. Their solution was the Stosszahlansatz (molecular-chaos postulate) which 
even they recognized as being completely ad hoc. 

In their work, and many subsequent attempts, the dynamical foundation for the 
investigation of the problem was always taken to be Hamiltonian in form. Hamiltonian 
sys teh  are intrinsically invertible and, from a dynamic perspective, can be at most ergodic 
or mixing. However, it is now known that another dynamic property-exactness-is both 
necessary and sufficient for the entropy of a system to globally evolve to a unique state 
of thermodynamic equilibrium [1,2]. Exactness is a property that may only be found in 
non-invertible systems, and thus Hamiltonian systems are automatically excluded as likely 
dynamical candidates for a foundation of thermodynamics. 

An alternative, which has received considerable attention. is coarse graining [l]-a 
process whereby dynamic information is available with only a certain degree of precision. 
Although a combination of coarse graining and invertible dynamics is capable of inducing 
entropy evolution to an equilibrium state, it is incapable of singling out a unique direction 
of time since this entropy evolution after coarse graining is independent of time reversal. 
Furthermore, the entropy convergence rate after coarse graining is inversely proportional to 
the measurement precision, which is in contradiction to all of OUT usual notions conceming 
irreversibility. 

t Permanent address: Departments of Physiology, Physics, and Mathematics and Center for Nonlinear Dynamics, 
McGiU University, 3655 Drummond Street, Montreal H3G 1Y6, Canada. 
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Here we adopt a completely novel approach to this old and important question. Using a 
toy system to illustrate our approach, we consider a two-dimensional system with invertible 
dynamics operating in a finite phase space. The dynamics are parametrized by a single 
number c. 

We consider a map S, : W + W, where W = [0, 11 x [0,1], to examine the 
different limiting behaviour of densities and entropy when different perspectives relative 
to S, are adopted. Although we have chosen a quite specific form for S,, we believe our 
considerations serve as a paradigm for interpreting the longstanding discrepancy between 
entropy behaviour at the macroscopic level and dynamic properties at the microscopic level. 

The specific discrete time map that we have chosen for study is given by 

S&, Y) = (TAX)- Y)) (1) 
wherein the parametrized maps T,, U, : [0,11 + IO, 11 are given by 

O G X G C ,  

x c < x ( l  

(the Mori map, see the left-hand portion of figure I), and 

(2) Tc(x) = 

respectively (see figure 1 right), where a and c in (2) and (3) satisfy a, c E (0,l). 

Figure 1. Components of the map S, defined by (1): left, the map .%+I = TAX.); right, the 
map yn+i = U&l yd. 

Since our goal in this paper is to study the dynamics of entropy evolution from different 
perspectives, we focus our attention on the evolution ofdensities under the action of S, and 
the corresponding evolution of entropies. 

The outline of this paper is as follows. In section 2 we introduce some basic concepts 
and definitions, illustrating these with the properties of the familiar Baker transformation. In 
section 3 we study the entropy behaviour of the full system S, as well as the behaviour of the 
subsystems T, and U,. We show that the entropy of the full system S, may increase, decrease 
or remain constant as a function of time. However, if we know only the dynamics of T, we 
conclude that the entropy always approaches an equilibrium entropy, while knowledge of U, 
alone leads us to the conclusion that the entropy is continuously decreasing. We conclude 
with a discussion of the physical implications of these different ways of examining dynamics 
and the consequences for entropy in section 4. 
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Before turning to our central points, we first intsoduce some concepts, definitions, and results 
that will be essential [1,2]. 

2.1. Dynamics, densities and density evolution 

Consider a system operating in a phase space W .  On this phase space the temporal evolution 
of our system is described by a dynamical law St that maps points w in the phase space 
W into new points, i.e. Sr : W -+ W, as time t changes. In general, W may be a d- 
dimensional phase space, either finite or not, and therefore w  is a d-dimensional vector. 
T i e ,  t ,  is discrete and integer valued, t E 2 = {. . . , -2, -1,O,'l, 2,. . .}. 

For example, we could consider a system with dynamics des&ibed by the Baker 
transformation 

- 

~~ 

which maps W = [0, I] x [O, I] into itself. We will use the Baker transformation to illustrate 
the concepts of this section, and lay the foundation for our investigations in subsequent 
sections. 

n o  types of dynamics will be important in ow considerations. First we introduce the 
concept of a dynamical system {S,) , ,Z on a phase space W, which is simply any group of 
transformations St : W + W satisfying: (i) SO(U)) = w; and (ii) S,(S,,(w)) = St+,(w) 
for t ,  t' E 2. Dynamical systems are invertible since they may be run either forward or 
backward in'time. Other than Hamiltonian dynamics, a good example of invertible 
system is given by the Baker transformation since 

The second type of dynamics, that is important to distinguish, is that of semidynamical 
systems {S,jrEN, which are any semigroup of transformations Sr : W + W, i.e. (i) 
&(w) = U) and (ii) $($,(w)) = $+t,(w) for t ,  t' E N = {O, 1,2,. . J. In contrast to 
dynamical systems, semidynamical systems are non-invertible and may not be run backward 
in time in an unambiguous fashion. A good example is given if w e  consider only t&e x 
component of the Baker transformation 

which can be written in the alternate form T(x) = 2x mod 1. The dynamics described by 
(6) are often referred tb as the dyadic map. It is obvious that T is non-invertible since for 
any given value of T, there are two possible values of x that could have produced it. 

The concept of a factor of a transformation can be understood with the aid of a diagram. 
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Let W and X be two different phase spaces. If there is a transformation F : W + X such 
that T1 o F = F o SI (so the diagram commutes), then Tr is called a factor of S,. A trajectory 
of the factor Tt is called a trace of the system SI. 

Going back to obr example of the Baker transformation, the transformation T for the x 
component is a factor of the Baker transformation. 

Since we are considering the temporal evolution of densities under the action of S, 
we examine the way in which the dynamics alter densities. If f is an L' function 
in the space W, i.e. if J, If(w)[dw 4 00, then f is a density if f E D where 
D = {f E L' : f 2 0, llfj = 11 denotes the set of all densities. (As usual, llfll 
denotes the L' norm llf[l = 1, If(w)[  dw.) The examination of the evolution of densities 
by system dynamics is equivalent to examining the behaviour of an infinite number of 
trajectories. Given a density f then the f-measure @,-(A) of the set A in the phase space 
W is defined by p,-(A) = SA f ( w )  dw  and^ f is called the density of the measure p f .  The 
usual Lebesgue measure of a set A is denoted by ~ L ( A ) ,  and the density of the Lebesgue 
measure is the uniform density, f ~ ( w )  = l / w ~ ( W )  for all points w in the phase space 
W. We always write pL(dw) = dw. Using the notion of an indicator function defined by 
l~(w) = 1 if w E A and IA(w) = 0 otherwise, we can write the density of the Lebesgue 
measure of a set A as f ~ ( w )  = l~(w)/p~(W). 

Although it is clear from (4) how successive temporal points ( x ,  y )  E W are computed 
to form the trajectory {xz ,  y l } E 0 ,  we must introduce an analogous concept for how densities 
evolve. Any linear operator P' : L' + L' thatsatisfies: (i) P'f > 0; and (ii) IIP'fll = l l f l l  
for all r E Z or N and f > 0, f E L' is called a Markov operator. If we restrict ourselves 
to only considering densities f, then any operator P which when acting on a density again 
yields a density is a Markov operator. Any density f. that satisfies P'f* = f* for all t is 
said to be a stationary density of the Markov operator P. In analogy with the definitions 
of dynamical and semidynamical systems in the last section, we may introduce invertible 
and non-invertible Markov operators. Given a Markov operator P', then P' is an invertible 
Markov operator if: (i) Pof = f ;  and (ii) P 1 ( P r ' f )  = P'+'f for all t ,  t' E Z. Clearly, 
allowing t ,  t' E Z is the origin of the invertibility. However, if property (ii) of an invertible 
Markov operator is replaced by (ii'), P r ( P ' f )  = Pr+'f for all t ,  t' E N, then P' is a 
non-invertible Markov operator. 

A transformation S, is said to be measurable if S;'(A) E W for all A E W. Furthermore, 
given a density f* and associated measure p*, a measurable transformation SI is non-singular 
if p*(S;'(A)) = 0 for all sets A such that pL+(A) = 0. If Sr is a non-singular transformation, 
then the unique Markov operator P' : L' + L' defined by 
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is called the Frobenius-Perron operator corresponding to S. The Frobenius-Perron operator 
P' describes the evolution of densities under the action of a dynamics S. The equation 
defining the Frobenius-Perron operator has a simple intuitive interpretation. Start with an 
initial density f and integrate this over a set B that will evolve into the set A under the 
action of the transformation SI. However, the set B is S;'(A). This integrated quantity 
must be equal, since S, is non-singular, to the integral over the set A of the density obtained 
after one application of SI to f. This final density is P'f. 

Given a density f and associated measure p,-, then a measurable transformation SI is 
said to be f-measure preserving if p,-(S;'(A)) = p,-(A) for all sets A.  Measure-preserving 
transformations are necessarily non-singular. Since the concept of measure preservation is 
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not only dependent on the transformation but also on the measure, we altemately say that the 
measure p~ is invariant with respect to the transformation SI if SI is f measure preserving. 

It is easily shown that the Baker transformation preserves the Lebesgue measure on 
W = [O, 11 x [O, 11 since an expansion in the x direction by a factor of two is always 
compensated for by~the corresponding contraction factor of 112 in the y direction. The 
Frobenius-Perron operator Corresponding to the Baker transformation is given by 

Clearly, Psl w ( x ,  y) = Iw(x, y )  illustrating that~~the uniform density of the Lebesgue 
measure @L([O, 11 x [O, 11) is a stationary density of Ps. 

2.2. Ergodicity, mixing and exacmess 

We next turn to a consideration of the dynamical properties of maps S : W + W as 
manifested through the behaviour of sequences of densities (P'f} where P is the Frobenius- 
Perron operator corresponding to S with stationary density f*. 

First, a non-singular transformation S; is said to be f. ergodic if (P'f} is Cesko 
convergent to f* for all densities f, i.e., if l i m r + m ( l / t ) C ~ ~ ( P k f , g )  = ( f * , g ) .  (Here, 
the scalar product of two functions is denoted in the usual way: (f, g) = 1, f ( x ) g ( x ) d x  
where f E L' and g E Lm.) Ergodicity is completely equivalent to the existence of a 
unique stationary density f*. Secondly, let SI be an f* measure-preserving transformation 
operating on a finite normalized space. Then SI is called f. mixing  if^ 

i.e. the sequence [P'f) is weakly convergent to the density f. for all initial densities f. 

phase space W, then S, is said to be f* exact if 
Thirdly, if SI is an f* measure-preserving transformation operating on a normalized 

Iim IIP'f - f*ll = o for all f E D 
1-m 

i.e. (P'f] is strongly convergent to f* for all initial densities f. Exactness is completely 
equivalent to lim+,,,,p*(S1(A)) = 1 for all sets A of non-zero measure. It is important to 
note that systems with invertible dynamics can never be enact. Exactness implies mixing 
which, in turn, implies ergodicity. If a given dynamics is ergodic, mixing or exact .we will 
also use the same adjective for the corresponding Frobenius-Perron operator. Intermediate 
between mixing and exactness is a fourth type of dynamics known as a K automorphism, 
but for all practical purposes we may take this as equivalent to mixing. 

The Baker transformation (4) is not only ergodic, it is also mixing (actually, it is more 
than mixing since it is a K-automorphism, but this will not concern us here). Because of 
its invertibility, it cannot be exact. However, if we consider the factor T ( x )  of the Baker 
system, it is well known that the dyadic map has a unique stationary density f&) = Ip.,j(x) 
for 0 S x < I and, further, is exact. 
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2.3. Entropy 
A central consideration in this paper is the behaviour of the entropy of a density. We first 
define the BoltzmannCibbs entropy of a density f by 
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H(f) = - f (w)  1% f ( w )  dw (8) IW 
in keeping with the introduction of entropy in the seminal work of Boltzmann and Gibbs. 

H(Psf) = - / /" f(&, 2 ~ )  log f ( i x ,  7-y) dx dy 

The Boltzmann-Gibbs entropy of the Baker transformation is given by 
I12 I 

0 0  

A change of variables on the right-hand side gives H ( P s f )  = H ( f ) ,  so H ( P i f )  = H ( f )  
for all times t ,  illustrating that the BoltzmannCibbs entropy of an invertible measure- 
preserving system is always constant in time. Furthermore, since the Baker transformation 
is ergodic we know that the stationary density f&, y) = 1 is unique. It is straightforward 
to show that H(1w) = 0 so the BoItzmann-Gibbs entropy of the full Baker transformation 
will, in general, not be equal to the entropy of the stationary density. 

Continuing with the Baker system, we suppose that although the dynamics (4) continue 
to operate we are ignorant of the existence of the variable y and are only able to measure 
values of the x variable (i.e. we are only able to examine a trace of S). Thus, through our 
measurements we are monitoring the behaviour of the exact dyadic map (6) in complete 
ignorance of the existence of the concomitant dynamics of y. 

The entropic implications of the dynamic property of exactness are contained in the 
following result, which also offers an interesting commentary about the second law of 
thermodynamics. 

Theorem I. Let P' be a Markov operator operating in a phase space W. Then the entropy 
of P'f goes to its equilibrium value H(f , )  as t + 00 

lim H ( P r f )  = H ( f , )  for all f E D 
,-+a 

if and only if P' is f* exact. 

Remark. Theorem 1 tells us that in only examining the trace of the factor T (given by 
(6)) of the full dynamics (4), i.e. by only observing x ,  we will conclude that the entropy 
of the observed system uniquely converges to the entropy of the stationary density! This 
is clearly in contrast to our conclusions when we observed the entropy behaviour under the 
action of the full dynamics S. 

The proof of this theorem is ,simple given the notion of conditional entropy, and a 

If f and g are two densities such that supp f c supp g (supp f denotes the support of 
lemma. 

f), then the conditional entropy of the density f with respect to the density g is 

The conditional entropy, a generalization of the Boltzmann-Gibbs entropy, is always defined 
and H , ( f [ g )  measures the deviation between the two densities f and g. The following 
lemma deals with the global convergence properties of H- 



The approach of entropy to equilibrium 1945 

Lemma 2. (Mackey [I], theorem 7.7.) Let P' be a Markov operator operating in a phase 
space W with stationary density f*. Then the conditional entropy of P'f with respect to 
.f* goes to zero 

lim H , ( P ' ~ I ~ , )  = o r-m 
for a i  f E D 

if and only if P' is f .  exact. 

Proofoftheorem 1. The proof follows directly from lemma 2 and the definition of f* 
exactness when we rewrite the conditional entropy of P'f with respect to f, in the form: 

In a general framework, theorem 1 is remarkable for two reasons: 
(i) It sets forth necessary and sufficient dynamic criteria for The second law of 

thermodynamics; and 
(ii) Since all exact systems are non-invertible, and all microscopic dynamical equations 

of motion in physics are invertible, it highlights a cle& problem that will be met in any 
attempt to reconcile macroscopic thermodynamic behaviour with microscopic dynamics as 
currently formulated. 

Continuing this examination of the entropy behaviour of  exact^ transformations and the 
question of factors, we close~this section with the following theorem. 

Theorem 3. (Rochlin [3]) Every f*-exact transformation is the factor of a K-automorphism. 

The transformation F involved in ow discussion of factors ind traces is precisely 
what Pngogine and co-workers [4,5] refer to as a projection operator in their work 
on the generation of irreversible behaviour from reversible dynamics. The Rcchlim 
theorem 3 serves as the analytic link in their work between K-automorphisms and exact 
transformations. 

Since K-automorphisms are invertible and measure preserving, their entropy is forever 
fixed at its initial value 111. On the other hand, by theorem 1 we know that the entropy of an 
exact transformation, which by theorem 3 is the factor of a K-automorphism, converges to 
its equilibrium value irrespective of the initial density with which the system was prepared. 

3. Three views of dynamics: three entropy behaviours 

With the introductory and illustrative material of the previous section, we now turn to our 
main subject-the investigation of the system (1)-(3), parametrized by c E (0, 1). Thus the 
full system S, is  a combination of a tent-like map T, (equation (2)) as considered by Mori 
and co-workers [6], and a slight generalization (Uc, equation (3)) of the y portion of  the 
Baker transformation. . . 



1946 

3.1. Entropy of  S, 

Like the Baker transformation, the map S, is invertible and has an inverse given by 
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From this relation, it follows that the Frobenius-Perron operator Ps, corresponding to S, is 

) 11dY) .  + l-cf (1 - (1 - c ) x ,  - Y -ff 
1 -a 1 -ff 

Although S, is inverrible, it is not measure preserving, and thus the Boltzmm-Gibbs 
entropy of Ps, f is, in general, not constant with respect to time. Indeed, a straightforward 
calculation gives 

where 

and 

An examination of the coefficients 

C 1 - c  
and log- 

1 -a log or(1 - c) 

in (12) shows that it is impossible for them to be simultaneously negative. There are two 
possibilities: 

(i) If they have different signs, then the entropy H ( P s J )  can be equal to, less than or 
greater than H ( f )  depending on the values of the integrals over the reduced density f ( x )  
of the factor T,. 

(ii) Alternatively, if both are positive (which occurs for c 4 ff e c/(l - c)) then the 
full dynamics S, are contracting and the entropy is decreasing, H ( P s , f )  < H ( f ) .  
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3.2. Entropy evolution of the factor Tc . ~ , .  

The Frobenius-Perron operator corresponding to T, is given by [6]  

and it has a parametrized stationary density 

The map Tc is a factor of the full two dimensional dynamics S, since the following 
commutative relation holds 

so 

PT~ /” f ( x , ~ )  dY = /” ps.f(x. Y) dy 

by identifying the factor,operator with F f ( x ,  y) = 1 f ( x ,  y) dy. This can be shown in a 
straightforward fashion using the explicit expressions for PT, and Ps.. 

Furthermore, the map ‘Tc is f* exact where f* is the stationary density given in (14). 
To prove this requires a minor digression. 

We first define a non-trivial lower bound function h E L’ for a Markov operator P as 
any function h > 0 with llhll > 0 such that P ‘ f  > h for all initial densities f .  
Then the following lemma is useful. 

Lemma 4. (Mackey [l], Theorem 7.6.) A Markov operator P is f* exact if and only if 
there exists a non-hivial lower bound function h for P .  

We can use this result to prove the exactness of the Mori map. Namely 

Theorem 5. The Mori map (2) is f* exact for. all c E (0, 1). 

Proof. Pick an arbitrary set A c [O, 11 with non-zero Lebesgue measure ~ L ( A )  =. 0. Note 
that for every two iterations of the Mori map, we have an expansion of the measure by a 
factor of at least l/c so in a finite number of steps 

(:I PLW = P L ( s * ~ ( ~ ) )  1 

and for all t > to( f ), where 

we have that-supp P;, f = [O, 11. 
Now let h = llo,l](x) inf,[liml,, Pic f (x)]). By our above arguments, h is a non-trivial 

0 lower bound function for PT~ and T, is f *  exact. 
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As a consequence of the exactness of the factor Tc of S,, we know from theorem 1 that 
the entropy H(P;-f)  will approach its equilibrium value of 

(15) 
1 H*(c)=H(f*)  =log(l+c)+-log(1-c) 

l + c  
a s t - t o o .  

Comparison of this result with theorem 3 offers an interesting parallel. Namely, in 
our situation we have a non-measure-preserving invertible map S, instead of the Baker 
transformation which is a measure-preserving K automorphism. Nevertheless, in the 
situation we consider here taking a trace (of S,) to give an exact factor (c) gives rise 
to a system whose entropy approaches the equilibrium value. 

We will see in the next section that this global approach of H ( P & f )  to the entropy of 
f* is accompanied by corresponding changes in the entropy of PbJ. 

3.3. Entropy evolurion and U, 
We next examine the temporal evolution of densities under the action of U, and the 
corresponding entropy. We do this for two different cases. 

(i) In the first, we consider a situation in which the evolution of x can be described 
exactly, i.e. by a trajectory which is given by the iteration of the map T, of equation (2). 
Then the evolution of y is described in tem of a density f(y) which evolves under the 
influence of the trajectory x( t ) .  

(ii) In the second, the evolution of both variables (n and y )  is described by a density 
f (x ,  y )  as in section 3.1, but then by integration over x a reduced or traced density ?(U) 
is considered. 

3.4. Case (i) 

In this case, the density f translates to PuCf according to 

Notice that the expression for PuCf is like a Frobenius-Perron operator, yet different for 
each time step because of its dependence on x .  Since from equation (16) the action of 
P U ~  is always contracting with (Y E (0.1). we know that the entropy H ( P ; ~ ~ )  is a strictly 
decreasing function of increasing time. Since T, is f* exact, the evolution of y under the 
action of U, can be alternatively interpreted as due to the action of a random map 171. 

As this behaviour is totally independent of the trajectory [x,}zo we should expect that 
it will also hold for an ensemble of trajectories described by the combined density f(n. y). 
This expectation is confirmed by the following calculation, corresponding to the second 
case listed above. 

3.5. Case (ii) 
Consider a density f ( x ,  y )  of the combined system whose evolution is governed by the 
Frobenius-Perron operator (11) of section 3.1. Then a ‘traced’ density f(y) is defined by 
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Furthermore, 

+ l(a.l,(Y) / l  I-Cf (1 - (1 - c)x ,  - y - f f )  1 -a! dx 
0 I-a! 

We will first prove that the weak inequality H(P& Q H ( f )  holds, and then show that, 
on average, the stronger relation H ( P u c f )  < H ( f )  holds on every second iteration. 

To show that the weak inequality H ( P u C f )  Q H ( f )  is always valid, note that the 
entropy of Pu,f can be written 

If we define 

where pi(y) = X(y)/f(y), for i = 1 ,2  and y E suppf with f(y) # 0, so P I +  pz  1. 
Using the relation 

PI logs + P Z W J  Q log(p1a + pzb) 

we have immediately 

H(PU.P) < HV). 
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In point of fact, we can sharpen this relation between successive entropies considerably, 
since in general H(Pu*J) < H ( f J  whenever p110ga + ~ 2 l o g b  < lOg(p1U + pzb). The 
only cases for which p110ga + palog b = log(p~a + pzb) are: (i) p1 = 0 or p2 = 0; or 
(ii) a = b. We consider each in turn. 

(i) If pl(y) = 0 then 

The same conclusion holds in the event that p z ( y )  = 0; or if pl(y) = 0 for y E A1 
and pz(y) 0 for y E A2 with A I ,  Az c [0,1] and AI U A2 = suppf. Thus, again 

(ii) From the above considerations it is obvious that a necessary condition for the equality 
H(Pucf)  < IUS). 

H(Pu, f )  = H ( f )  to hold is a = b or 

Consider the phase space of S,, consisting of the unit square, divided into four regions as 
illustrated in figure 2. A straightforward consideration of the map (1) shows that under the 
action of S, the flows between these four regions is given by 

mc / ; ; ;Z \  
I + ut II. 

Since there is no input to region I it folIows that, in general (after transients), H(P& = 
H ( f )  if and only if supp J% is contained in region IV. Because of the flows between the 
four regions, it may be the case that on one iteration H(PuCf)  = H ( f ) ,  but for the next 
H ( P i c f )  < H ( P u C f ) .  Thus we conclude that, on an average encompassing two or more 
iterations, the entropy H ( P h - f )  is s&ctly decreasing. 

U '!a 0 c 1 X 

Figure 2. Four regions of the phase space W. 
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4. Conclusions 

In this paper we have considered a simple system in three different ways, demonstrating 
that dynamic entropy behaviour can be radically different depending on the perspective. 
Namely, the entropy of the entire (invertible) system S, may be constant, increasing or 
decreasing as a function of time. However, by taking a trace of an invertible dynamical 
system we may either obtain a system (U,) in which the entropy is continuously decreasing, 
or an exact (non-invertible) factor (Tc) may he obtained which shows a global evolution of 
entropy to a unique equilibrium. 

Even though the system we consider is extremely simple, the fact that it is capable of 
displaying such a wide range of behaviour normally associated with much more complicated 
systems leads us to speculate whether it offers an important paradigm for extending our 
understanding of equilibrium and non-equilibrium thermodynamic behaviour. 
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